New multi-gigabit wireless systems satisfy high-security rapid response applications

By Dr. Jonathan Wells

E-Band wireless communications is a new technology that allows gigabit per second (Gbps) data rates to be transmitted with very high weather availability over distances of a mile or more. Characterized as Low Probability of Detect/Low Probability of Intercept (LPD/LPI), it is a perfect technology to satisfy hostile territory battlefield situations where there’s a need for high security, high speed, point-to-point, non-wire-line communications. A novel licensing structure coupled with an ability to quickly deploy links permits rapid response to homeland defense and other time-critical security applications.

We live in a digital world. Essentially all communications, from telephone calls to personal e-mails to e-commerce transactions, are carried on digital networks. The ubiquity and ease of access to digital networks coupled with the sensitivity of much of the transmitted data means that security is now a prerequisite for many digital systems.

Wireless communication systems traditionally have not provided any level of security. In fact, the early value of wireless was its ability to be widely detected and decoded (for example, terrestrial TV and radio broadcasts). However, the growth of data communications for Internet and e-commerce services has forced systems designers to start considering security as a primary system requirement.

Operating in the relatively unused 70, 80, and 90 GHz regions of the spectrum, E-Band wireless communications is a new technology that offers both gigabit-speed wireless connectivity and a level of security that can be classified as LPD/LPI. Very high data rates, portability, and ease of deployment make E-Band communications ideal for rapid response and other time-critical homeland defense security purposes.

Wireless E-Band: An overview

In October 2003, the Federal Communications Commission (FCC) made an historic ruling that 13 GHz of spectrum at 71 to 76 GHz, 81 to 86 GHz, and 92 to 95 GHz was available for commercial high-density fixed wireless services in the United States. The very high bandwidth allocated allows true gigabit-speed wireless communications to be realized. Transmission at 1 Gbps or higher is possible, equivalent to 647 T1 links or 1,000 DSL connections. The FCC ruling also permitted a novel licensing scheme, allowing cheap and fast allocations to prospective users. License applications are made via a simple Web portal and are generally approved within 30 minutes of filing, providing the user with full federal protection against both unintentional and malicious interference. New commercial markets for fiber replacement or extension, point-to-point wireless local area networks, and broadband Internet access at gigabit data rates and beyond have been opened up. Then-FCC Chairman Michael Powell heralded the ruling as opening a new frontier in commercial services and products for the American people.

Although intended to enable high data rate, commercial point-to-point applications, E-Band atmospheric and propagation properties make equipment designed for these frequencies very useful for secure military applications.

Why 70 and 80 GHz?

Atmospheric absorption varies significantly with frequency, as shown in Figure 1[1]. At conventional microwave frequencies, atmospheric attenuation is reasonably low, until a peak is seen at around 60 GHz, where absorption by oxygen molecules results in 15 dB/km attenuation, seriously limiting radio transmission distances.

After this peak is a large window where attenuation drops to less than 1 dB/km (effectively negligible) before rising again due to other molecular effects. This window has a minimum at
technology

94 GHz, which is why this frequency has been previously exploited for military applications. It can be seen that the spectrum from around 70 GHz up to around 120 GHz exhibits low atmospheric attenuation and fortunately is relatively unused.

Due to the unprecedented bandwidths allocated by the FCC, the 70 and 80 GHz bands are ideal for very high capacity data distribution. With 5 GHz of bandwidth centered at both 73.5 and 83.5 GHz, gigabit and higher data rates can easily be accommodated with reasonably simple radio architectures and modulation schemes. This results in low-cost, high-reliability systems.

As with all high-frequency radio propagation, rain will limit link distances. E-Band transmissions can experience 30 dB/km attenuation when in the presence of intense rain, as shown in Figure 2[2]. Such intense rain tends to form in small clusters within a lower intensity rain cloud, and is usually associated with a severe weather event that moves quickly across the link. Therefore, rain outages tend to be short and only occur on longer distance transmissions. Fortunately, the International Telecommunication Union (ITU) and other bodies have collected many decades of rain data from around the world, so rainfall characteristics are well understood. With such information, it is easy to engineer radio links to overcome even the worst weather or to predict the levels of weather outage on longer links.

E-Band systems (70/80 GHz) are available for both commercial and military applications. One such product, GigaBeam’s WiFiber radio[3], combines high output transmitters with advances in signal processing to overcome rain limitations and achieve the best link distances in the industry. Distances of one mile or more can be achieved across 80 percent of the United States with 99.999 percent weather availability, equivalent to five minutes of rain outages per year. Longer links can be engineered for less demanding weather availability.

Secure applications
E-Band systems offer huge military and government potential. Very high data rates, portability, and ease of deployment make E-Band communications ideal for homeland defense and other security purposes. Rapidly deployable, high-definition video links for high data rate event security (for example, facial mapping for recognition purposes) is one such application. Another is high

---

Figure 1

Figure 2

Reprinted from MILITARY EMBEDDED SYSTEMS  SPRING 2006 Copyright 2006
data rate battlefield data distribution from satellites. This list of possible applications is endless.

E-Band systems excel in military applications since the millimeter-wave properties allow the radio to be classified as LPD/LPI. For any point-to-point technology, antennas generally have to be placed on high towers or masts, so a clear line of sight can be achieved. By necessity, this means that few buildings or possible interception points can be close to the radio path. However, the ether between any two antennas is never secure, and a determined hacker with a basic understanding of the particular radio system architecture will be able to sniff off part of the broad transmission radio signal.

E-Band systems, however, are of a frequency much higher than conventional wireless systems, resulting in antennas that have much greater focusing ability. A typical application with a two-foot dish antenna has a very narrow 0.3° beamwidth, meaning that transmitted signals propagate as highly focused and directional pencil beams from the antenna. Transmitted signals do not form broad diverging beams that illuminate large areas as at lower frequencies. Contrast this two-foot, 0.3° E-Band scenario to a similar two-foot dish at L-Band (1.5 GHz, a common military frequency). Here the beam will spread in a cone shape over 30°. Thus, an E-Band product’s narrow pencil beams, which, of course, are invisible, are inherently much harder to locate and far more difficult to intercept.

Rapid deployment applications

The ease of deployment of E-Band wireless systems coupled with the fast and easy licensing scheme enables the technology to operate well as a rapid response system for defense or security applications. The E-Band system can be used as either the primary communication link or as backhaul to a lower data rate but longer range technology. An example of one such rapid response communication application is shown in Figures 3 and 4. Here two GigaBeam WiFiber radios are installed on an Integrated Tower Systems mobile mast[4], each providing a gigabit connectivity link to another mobile tower. An Adaptix
WiMAX system provides local point to multipoint coverage from the gigabit backhaul provided by the WiFiber radios. This system, 106-foot-tall when extended, can be fully installed and commissioned within an hour and can withstand winds to 120 mph when properly secured with guy wires.

**Alternative technologies**

There are several other wireless gigabit alternatives to E-Band. Conventional microwave wireless operating up to 40 GHz only offers data rates to around 300 Mbps. Because of the divergent nature of their beams, unless the system possesses a huge antenna, microwave radios cannot be classified as LPD/LPI. Since the oxygen absorption limits link distances of only one-fourth to one-half mile, 60 GHz radios are suitable for short-range communications. Such short distances and high attenuation does, however, limit the ability to eavesdrop on the signal. Free Space Optics (FSO) is another LPD/LPI technology by virtue of its transmission of data across a laser link. However, FSO equipment has limitations in system availability – it is severely affected by fog, cannot transmit through optical blockages, and is restricted by particles such as sand and dust and requires complex and unwieldy active tracking mounts to maintain the precise alignment of the narrow transmission beam.

A comparison of typical E-Band radio’s performance against main competing technologies is illustrated in Table 1. It can be seen that of several technologies suitable for both LPD/LPI and rapid response situations, only E-Band radios offer the ability to reliably transmit at distances of a mile or more, plus provide the benefits of full license protection.

<table>
<thead>
<tr>
<th></th>
<th>E-Band (70/80 GHz)</th>
<th>Microwave radio (18-38 GHz)</th>
<th>60 GHz radio</th>
<th>Free Space Optics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max data rates</td>
<td>1 Gbps</td>
<td>322 Mbps</td>
<td>1 Gbps</td>
<td>1 Gbps</td>
</tr>
<tr>
<td>Typical link distances (99.999% availability/5 minutes outage per year)</td>
<td>1 mile</td>
<td>3 miles</td>
<td>400 yards</td>
<td>200 yards</td>
</tr>
<tr>
<td>Typical link distances (99.9% availability/8 hours outage per year)</td>
<td>2.5 miles</td>
<td>5+ miles</td>
<td>600 yards</td>
<td>500 yards</td>
</tr>
<tr>
<td>LPD/LPI</td>
<td>Yes</td>
<td>Not usually</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Regulatory protection</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Licensing, installation, and commissioning time</td>
<td>Hours</td>
<td>Weeks</td>
<td>Hours</td>
<td>Hours</td>
</tr>
<tr>
<td>Relative product complexity for max data rate and max link length</td>
<td>Simple</td>
<td>Complex</td>
<td>Simple</td>
<td>Complex</td>
</tr>
<tr>
<td>Suitable for rapid deployment</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>

It is a perfect technology to satisfy hostile territory battlefield situations where there’s a need for high bandwidth, point-to-point, non-wire-line communications. Being a quick and easily deployable technology with an associated fast, online licensing scheme, E-Band products also satisfy rapid deployment or time-critical homeland security and defense applications.

**References**

[2] Ibid. See Figure 10.

**Jonathan Wells** is director of product management for GigaBeam Corp., a provider of high-performance wireless solutions that operate in the licensed 71 to 76 GHz and 81 to 86 GHz E-Band radio spectrum. Jonathan has a PhD in Millimeter-wave Electronics for work on novel 94 GHz receivers and an MBA with specialization in strategic R&D management. He is a senior member of the IEEE and is active on the WCA’s Above 60 GHz Spectrum Development Committee. He has held a variety of technical and managerial roles in a number of countries around the world.

For more information, contact Jonathan at:

**GigaBeam Corporation**
470 Springpark Place, Suite 900
Herndon, VA 20170
Tel: 571-283-6200
E-mail: jonathan.wells@gigabeam.com
Website: www.gigabeam.com