Ronen Isaac, MilSource
-
Fiber and copper working together for today’s Ethernet backbones
ETHERNET EVERYWHERE BLOG: In all mobile military and airborne platforms, the transition from mechanical systems to electronically controlled systems is taking place. As the electronics content continues to grow, so do the processing loads that happen on every platform. Embedded computers are rising in sophistication as they need to support sensors, radar, video streams, and remote-control functions. Distributed processing, the interconnection of devices, and communication between devices has led to an exponential jump in bandwidth requirements on the interconnects between these devices. Traditional protocols like IEEE 1394 and USB still have legacy applications on these platforms, but most new platforms and platform retrofits are turning to Ethernet as their de facto communications protocol, supporting 1 Gbps in most platforms and growing to 10 Gbps in certain payloads.
-
The future of Ethernet
ETHERNET EVERYWHERE BLOG: In my last blog, I took a look at the history of Ethernet. It was fun to look back at history, however it is more important to look at the future. With Ethernet becoming the ubiquitous connectivity standard for service providers, enterprises, and military applications, we are letting go of proprietary networking technologies and heading directly in to industry standard networking based on Ethernet.
-
Aloha! Ethernet: The history of Ethernet
ETHERNET EVERYWHERE BLOG: So, to get a little retro on everybody, I thought I’d take a step back in time and have a fun look at the history of Ethernet. A couple of months ago, Ethernet actually celebrated its 44th anniversary. That’s right. Ethernet was developed back in 1973 and today, 44 years later, it is becoming THE ubiquitous local area networking (LAN) technology in addition to wide area networking (WAN) and now even infiltrating storage area networking (SAN).
-
Commercial vs ruggedized Ethernet switches and routers. What’s the difference?
ETHERNET EVERYWHERE BLOG: We’re often approached by companies who have designed a prototype system composed of networks sensors, cameras, GPS systems, and other elements with compute platforms over Ethernet. These prototypes often use commercial-grade Ethernet switches. Sometimes they use the enclosure, sometimes they pull the components out of the enclosure and try to jerry-rig the switch components in some sort of fashion. What they soon find out, however, is that these commercial-grade switches (and other commercial-grade componentry) do not stand up the rigorous environmental factors that mobile military and aerospace applications almost always run in to.
-
Static routing vs dynamic routing on Ethernet networks
ETHERNET EVERYWHERE BLOG: “Routing” on a network is a common term that I think almost everybody knows and understands today. Just to clarify, routing is the act of finding a path for a data packet to travel from one network to another. However did you know that there are three key elements needed to make this routing happen:
-
Ethernet: The connectivity platform of choice for UAVs
Ethernet is the go-to for UAVs
-
Powering devices using Ethernet
ETHERNET EVERYWHERE BLOG: Power over Ethernet, or POE, is a technology that enables a single cable to provide both data connection and electrical power to networked pieces of equipment such as sensors, IP video cameras, and even wireless mesh nodes. POE works across standard network cabling (i.e. CAT5) to supply power directly from the data ports to which networked devices are connected.
-
Link aggregation: A cool tip for better bandwidth & redundancy on Ethernet switches
ETHERNET EVERYWHERE BLOG: Have you ever worried that your existing 1G link may not be cutting the mustard for some data transmission? What about link redundancy and failover with your existing Ethernet device? Wouldn’t it be nice to know that you you’ll always have failover?
-
The 31 flavors of Ethernet
ETHERNET EVERYWHERE BLOG: Our last blog on Everything Ethernet covered the basic subject of why Ethernet is a good choice for military and embedded applications. Now that Why has been explained, I thought that I would spend some time talking about the What? Most people are often surprised by the different flavors, so to speak, of Ethernet that exist. I’m not sure that there are actually 31 flavors, but for this discussion, it is close enough.
-
ETHERNET EVERYWHERE BLOG: Why Ethernet?
ETHERNET EVERYWHERE BLOG: This is a first in a series of blogs covering the latest and greatest information surrounding Ethernet. However, I thought I’d start out the first blog answering the question “Why Ethernet?" and then, I’ll proceed through a series discussing the latest innovations, standards, and applications.
- 1
- 2